اولویت بندی اصلاح نقاط پرحادثه راهها با کمک شبکه عصبی مصنوعی
نویسندگان
چکیده
روشهای اولویت بندی اصلاح مقاطع پر تصادف، عمدتا ًبر اساس روشهای تک معیاره استوار بوده اند. به این ترتیب که با تعریف یک معیار مستقل و مجزا، شناسایی و اولویت بندی مقاطع مختلف انجام می شده است. با توجه به کمبود بودجه برای انجام اقدامات ایمن سازی، اولویت بندی مقاطع غیر ایمن از اهمیت خاصی برخوردار است. در این راستا روشهای متفاوت و متعددی توسط کارشناسان ارائه شده که هر یک بر مبنای خاصی استوار بوده اند. در این بین می توان به دو ساختار کلی مبتنی بر بررسیهای اقتصادی و فنی اشاره کرد. از طرفی به دلیل ضعف موجود در آمار تصادفات (ناقص، غلط یا بلا استفاده بودن آمار)، بهتر است تا روشهای شناسایی و اولویت بندی ارائه شده، تا حد امکان بدون توجه به آمار تصادفات پایه گذاری و مطرح شوند و در اینجاست که روشهای نو و فرا ابتکاری اهمیت ویژه ای پیدا می کنند. در این تحقیق که بعنوان مطالعه جدیدی در زمینه ایمنی راه در کشور محسوب می گردد، از ابزار قدرتمند شبکه های عصبی مصنوعی چند لایه پیش خوراند برای پیش بینی اولویت اصلاح نقاط حادثه خیز محورهای استان مازندران، استفاده شده است و سعی شده است تا ضمن بررسی مزایای استفاده از شبکه عصبی، با در نظر گرفتن تاریخچه تصادفات نقاط و هزینه های اصلاح آنها روش دستیابی به اولویت بندی بهینه مورد تحلیل و بررسی قرار گیرد.
منابع مشابه
شناسایی و اولویت بندی مهارت های کارآفرینی روستایی: کاربرد تکنیک شبکه عصبی مصنوعی
امروزه، گسترش فرهنگ کارآفرینی و فراهم ساختن بستر اخلاقی مناسب کسب و کار که یکی از فاکتورهای مؤثر برای توسعه اقتصادی کشورها قلمداد میشود، در گرو پرورش مهارتها، توانمندیها و قابلیتهای کارآفرینانه در جوامع است. در این راستا، شناخت ویژگیها، مهارتها و توانمندیهای کارآفرینانه، بالاخص صلاحیتهای کارآفرینی روستایی میتواند کمک شایان توجهی در پیشبرد این موضوع داشته باشد. از همین رو، هدف پژوهش توص...
متن کاملتخمین پارامترهای خشک کردن گوجه فرنگی با کمک شبکه های عصبی مصنوعی
در این پژوهش خشک کردن لایه ای نازک گوجه فرنگی به روش جابجایی هوای داغ شبیه سازی گردید. اسلایس های گوجه فرنگی در دو دمای (60 و 70 درجه سانتیگراد) خشک شدند. شبکه عصبی پرسپترون برای پیش بینی نسبت رطوبت و سرعت خشک کردن نمونه ها در طی خشک کردن بکار گرفته شد. بهترین چیدمان شبکه عصبی برای شبکه اول بر اساس یک لایه پنهان،2 و 8 نرون در لایه پنهان به ترتیب برای نسبت رطوبت و آهنگ خشک کردن بود. همچنین بهتری...
متن کاملپیشبینی آماری پهنه بندی خطر زلزله احتمالی با استفاده شبکه های عصبی مصنوعی
پیشبینی محل وقوع زلزلههای آتی همراه با تعیین درصد احتمال رخداد، میتواند در کاهش خطرات ناشی از زلزله بسیار سودمند باشد. تعیین محلهای پیشبینی شده، سبب افزایش توجه به طراحی، بهسازی لرزهای و ارزیابی قابلیت اعتمادپذیری سازههای موجود در این مکانها میشود. در پیشبینی زمان وقوع زلزله فرضیهها و نظریههای گستردهای مطرح است. هنوز شیوهای دقیق برای پیشبینی زمان رخداد زلزلههای آتی مورد تأیید ق...
متن کاملطبقه بندی نظارت شده جوامع گیاهی شمشاد هیرکانی با استفاده از شبکه عصبی مصنوعی
در این پژوهش، کاربرد روش شبکه عصبی مصنوعی یا MLP در فرآیند تخصیص رلوه- گروهها/جوامعگیاهی با استفاده از پایگاه اطلاعاتی ترکیبگیاهی جنگلهای شمشاد هیرکانی (Buxus hyrcana Pojark.) ارزیابی شد. برای این منظور، نخست گروههای بومشناختی و جامعهشناختی شمشاد هیرکانی به ترتیب با استفاده از نتایج دو روش عددی TWINSPAN و تجربی براون-بلانکه تعیین شد. نتایج هر دو دارنگاره عددی و تجربی طبقهبندی مشتمل بر 7...
متن کاملپویاسازی خوشه بندی مشتریان با استفاده از روش DEA-DA در بستر شبکه عصبی مصنوعی SOM
چکیدهامروزه ارزیابی مشتریان برای ارائه خدمات مناسب یکی از مهم ترین چالش های مدیران و تصمیم گیرنددگان درسازمانهای مختلف است. در سازمانهای مختلف گاه با توجه به حجم سنگین تقاضای مشتریان پاسخ گدویی بدهنیازهای تمامی آنان امکان پذیر نیست و از سدوی دیگدر ایدن مشدتریان بده عندوان سدرمایه هدای سدازمان ها قلمددادمی شوند. این موضوع هدفمند نمودن مطالعده بدر روی گدرو ه هدای مختلدف مشدتریان در بازارهدای رقدا...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
مدلسازی در مهندسیجلد ۸، شماره ۲۰، صفحات ۷۱-۸۱
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023